drift
-
The Hot Mess Problem: Why “Smarter” Models Still Fail in Wild, Unstable Ways
Anthropic recently published “The Hot Mess of AI: How Does Misalignment Scale with Model Intelligence and Task Complexity?”, alongside a paper that tries to answer a question that’s been sitting in the middle of modern AI discourse like a splinter: When AI systems fail, do they fail by pursuing the wrong goal consistently—or by becoming Continue reading
Anthropic, bias, branching, capacity, chatgpt, ChatGPT-5.2, complexity, constraint, divergence, drift, failure, frontier, hot mess, incoherence, intelligence, LLM, long-horizon, misalignment, model, nondeterminism, rationalization, reasoning, reward, sampling, scale, stability, stochastic, task, training, unpredictability, variance